Electrical compartmentalization in dendritic spines.
نویسنده
چکیده
Most excitatory inputs in the CNS contact dendritic spines, avoiding dendritic shafts, so spines must play a key role for neurons. Recent data suggest that, in addition to enhancing connectivity and isolating synaptic biochemistry, spines can behave as electrical compartments independent from their parent dendrites. It is becoming clear that, although spines experience voltages similar to those of dendrites during action potentials (APs), spines must sustain higher depolarizations than do dendritic shafts during excitatory postsynaptic potentials (EPSPs). Synaptic potentials are likely amplified at the spine head and then reduced as they invade the dendrite through the spine neck. These electrical changes, probably due to a combination of passive and active mechanisms, may prevent the saturation of dendrites by the joint activation of many inputs, influence dendritic integration, and contribute to rapid synaptic plasticity. The electrical properties of spines could enable neural circuits to harness a high connectivity, implementing a "synaptic democracy," where each input can be individually integrated, tallied, and modified in order to generate emergent functional states.
منابع مشابه
Dendritic Spines as Tunable Regulators of Synaptic Signals
Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and el...
متن کاملBarriers in the brain: resolving dendritic spine morphology and compartmentalization
Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal c...
متن کاملSpine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization.
Dendritic spines have been proposed to function as electrical compartments for the active processing of local synaptic signals. However, estimates of the resistance between the spine head and the parent dendrite suggest that compartmentalization is not tight enough to electrically decouple the synapse. Here we show in acute hippocampal slices that spine compartmentalization is initially very we...
متن کاملDendritic spines linearize the summation of excitatory potentials.
In mammalian cortex, most excitatory inputs occur on dendritic spines, avoiding dendritic shafts. Although spines biochemically isolate inputs, nonspiny neurons can also implement biochemical compartmentalization; so, it is possible that spines have an additional function. We have recently shown that the spine neck can filter membrane potentials going into and out of the spine. To investigate t...
متن کاملExamining Form and Function of Dendritic Spines
The majority of fast excitatory synaptic transmission in the central nervous system takes place at protrusions along dendrites called spines. Dendritic spines are highly heterogeneous, both morphologically and functionally. Not surprisingly, there has been much speculation and debate on the relationship between spine structure and function. The advent of multi-photon laser-scanning microscopy h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of neuroscience
دوره 36 شماره
صفحات -
تاریخ انتشار 2013